Error Bounds for Compound Quadrature of Weakly Singular Integrals
نویسندگان
چکیده
منابع مشابه
Numerical quadrature for computing of singular integrals
In the present work we have studied superconvergence of Hadamard finite-part integral. We have studied the second-order and the third-order quadrature formulae of Newton-Cotes type. We follow works [Sun, Wu, 2005b], [Lü, Wu, 2005] and work [Wu, Yu and Zhang, 2009] and introduce new rule which gives the same convergence rate as rules in [Lü and Wu, 2005] and [Wu, Yu and Zhang, 2009] but in more ...
متن کاملQuadrature methods for highly oscillatory singular integrals
We study asymptotic expansions, Filon-type methods and complex-valued Gaussian quadrature for highly oscillatory integrals with power-law and logarithmic singularities. We show that the asymptotic behaviour of the integral depends on the integrand and its derivatives at the singular point of the integrand, the stationary points and the endpoints of the integral. A truncated asymptotic expansion...
متن کاملHierarchical quadrature for multidimensional singular integrals
We introduce a method for the evaluation of singular integrals arising in the discretisation of integral equations. The method is based on the idea of repeated subdivision of domains. The integrals defined on these subdomains are classified. Each class can be expressed as a sum of regular integrals and representatives of other classes. A system of equations describes the relations between the c...
متن کاملLp BOUNDS FOR SINGULAR INTEGRALS AND MAXIMAL SINGULAR
Convolution type Calderr on-Zygmund singular integral operators with rough kernels p.v. (x)=jxj n are studied. A condition on implying that the corresponding singular integrals and maximal singular integrals map L p ! L p for 1 < p < 1 is obtained. This condition is shown to be diierent from the condition 2 H 1 (S n?1).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1971
ISSN: 0025-5718
DOI: 10.2307/2005211